

Department: Chemical Engineering

Level: 3rd level

Semester: Summer Semester Course title: Analytical Chemistry

Course Code: CHE 305

Date: 28/7/2018

Day: Saturday

Time allowed: 1.30 hr. Full marks: 20 marks No. of pages: 1

Answer on all questions

Question1 (10 marks)

1-Define: (4marks)

Solvent-

The solvent does the dissolving; and the solvent is commonly the major fraction of the mixture. **Titrant**- the reagent added to a solution containing the analyte and whose volume is the signal **Equivalence point**-

The point in a titration where stoichiometricall equivalent amounts of analyte and titrant react.

Indicator

A colored compound whose change in color signals the end point of titration

2- Sketch a titration curve for the titration of 50.0 mL of 0.100 M Fe^{2+} with 0.100 M Ce^{4+} in a matrix of 1 M $HClO_4$. E_{Fe} =0.76V E_{Ce} =1.7V (6marks)

$$Fe^{2+}(aq) + Ce^{4+}(aq) \rightleftharpoons Ce^{3+}(aq) + Fe^{3+}(aq)$$

Moles Fe^{2+} = moles Ce^{4+}

or

$$M_{\rm Fe}V_{\rm Fe}=M_{\rm Ce}V_{\rm Ce}$$

Solving for the volume of Ce4+

$$V_{\text{Ce}} = \frac{M_{\text{Fe}}V_{\text{Fe}}}{M_{\text{Ce}}} = \frac{(0.100 \text{ M})(50.0 \text{ mL})}{(0.100 \text{ M})} = 50.0 \text{ mL}$$

$$E = E_{\text{Fe}^{3+/\text{Fe}^{2+}}}^{\circ} - 0.05916 \ln \frac{[\text{Fe}^{2+}]}{[\text{Fe}^{3+}]}$$

The concentrations of $\mathrm{Fe^{2+}}$ and $\mathrm{Fe^{3+}}$ after adding 5.0 mL of titrant are

$$[Fe^{2+}] = \frac{\text{moles unreacted Fe}^{2+}}{\text{total volume}} = \frac{M_{Fe}V_{Fe} - M_{Ce}V_{Ce}}{V_{Fe} + V_{Ce}}$$

$$= \frac{(0.100 \text{ M})(50.0 \text{ mL}) - (0.100 \text{ M})(5.0 \text{ mL})}{50.0 \text{ mL} + 5.0 \text{ mL}} = 8.18 \times 10^{-2} \text{ M}$$

$$[Fe^{3+}] = \frac{\text{moles Ce}^{4+} \text{ added}}{\text{total volume}} = \frac{M_{Ce}V_{Ce}}{V_{Fe} + V_{Ce}}$$

$$= \frac{(0.100 \text{ M})(5.0 \text{ mL})}{50.0 \text{ ml} + 5.0 \text{ mL}} = 9.09 \times 10^{-3} \text{ M}$$

Substituting these concentrations into equation along with the formal potential for the Fe³⁺/Fe²⁺ half-reaction, we find that the potential is

$$E = +0.767 \text{ V} - 0.05916 \log \left(\frac{8.18 \times 10^{-2}}{9.09 \times 10^{-3}} \right) = +0.711 \text{ V}$$

At the equivalence point:

$$E_{\text{eq}} = E_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\circ} - 0.05916 \log \frac{[\text{Fe}^{2+}]}{[\text{Fe}^{3+}]}$$

$$E_{\text{eq}} = E_{\text{Ce}^{4+}/\text{Ce}^{3+}}^{\circ} - 0.05916 \log \frac{[\text{Ce}^{3+}]}{[\text{Ce}^{4+}]}$$

Adding together these two Nernst equations leaves us with

$$2E_{eq} = E_{Fe^{3+}/Fe^{2+}}^{\circ} + E_{Ce^{4+}/Ce^{3+}}^{\circ} - 0.05916 \log \frac{[Fe^{2+}][Ce^{3+}]}{[Fe^{3+}][Ce^{4+}]}$$

At the equivalence point, the titration reaction's stoichiometry requires that

$$[Fe^{2+}] = [Ce^{4+}]$$

$$[Fe^{3+}] = [Ce^{3+}]$$

The ratio in the log term of equation, therefore, equals one and the log term is zero.

$$E = E_{\text{Ce}^{4+}/\text{Ce}^{3+}}^{\circ} - 0.05916 \log \frac{[\text{Ce}^{3+}]}{[\text{Ce}^{4+}]}$$

For example, after adding 60.0 mL of titrant, the concentrations of Ce³⁺ and Ce⁴⁺ are

$$\begin{aligned} [\text{Ce}^{3+}] &= \frac{\text{intial moles Fe}^{2+}}{\text{total volume}} = \frac{M_{\text{Fe}}V_{\text{Fe}}}{V_{\text{Fe}} + V_{\text{Ce}}} \\ &= \frac{(0.100 \text{ M})(50.0 \text{ mL})}{50.0 \text{ mL} + 60.0 \text{ mL}} = 4.55 \times 10^{-2} \text{ M} \end{aligned}$$

$$[Ce^{4+}] = \frac{\text{moles excess } Ce^{4+}}{\text{total volume}} = \frac{M_{Ce}V_{Ce} - M_{Fe}V_{Fe}}{V_{Fe} + V_{Ce}}$$
$$= \frac{(0.100 \text{ M})(60.0 \text{ mL}) - (0.100 \text{ M})(50.0 \text{ mL})}{50.0 \text{ mL} + 60.0 \text{ mL}} = 9.09 \times 10^{-3} \text{ M}$$

Substituting these concentrations into equation gives the potential as

$$E = +1.70 \text{ V} - 0.05916 \log \frac{4.55 \times 10^{-2}}{9.09 \times 10^{-3}} = 1.66 \text{ V}$$

Volume Ce**		Volume Ce4+	
(mL)	E (V)	(mL)	E (V)
5.00	0.711	55.00	1.64
10.00	0.731	60.00	1.66
15.00	0.745	65.00	1.67
20.00	0.757	70.00	1.68
25.00	0.767	75.00	1.68
30.00	0.777	80.00	1.69
35.00	0.789	85.00	1.69
40.00	COB.O	90.00	1.69
45.00	0.823	95.00	1.70
50.00	1.23	100.00	1.70

Page 3 of 6

Question2 (10marks):

1- Calculate and sketch qualitatively correct titration curve for the following acid-base titration: 25 mL of 0.1 M NaOH with 0.05 M HCl (5marks)

Moles HCl = moles NaOH

or

$$M_{\rm a}V_{\rm a}=M_{\rm b}V_{\rm b}$$

where the subscript 'a' indicates the acid, HCl, and the subscript 'b' indicates the base, NaOH. The volume of NaOH needed to reach the equivalence point, therefore, is

$$V_{\text{eq}} = V_{\text{b}} = \frac{M_{\text{a}}V_{\text{a}}}{M_{\text{b}}} = \frac{(0.100 \text{ M})(50.0 \text{ mL})}{(0.200 \text{ M})} = 25.0 \text{ mL}$$

Before the equivalence point, HCl is present in excess and the pH is determined by the concentration of excess HCl. Initially the solution is 0.100 M in HCl, which, since HCl is a strong acid, means that the pH is

$$pH = -log[H_3O^+] = -log[HCl] = -log(0.100) = 1.00$$

The equilibrium constant for reaction 9.1 is $(K_w)^{-1}$, or 1.00×10^{14} . Since this is such a large value we can treat reaction 9.1 as though it goes to completion. After adding 10.0 mL of NaOH, therefore, the concentration of excess HCl is

[HCl] =
$$\frac{\text{moles excess HCl}}{\text{total volume}} = \frac{M_a V_a - M_b V_b}{V_a + V_b}$$

= $\frac{(0.100 \text{ M})(50.0 \text{ mL}) - (0.200 \text{ M})(10.0 \text{ mL})}{50.0 \text{ mL} + 10.0 \text{ mL}} = 0.050 \text{ M}$

giving a pH of 1.30.

$$[OH^{-}] = \frac{\text{moles excess NaOH}}{\text{total volume}} = \frac{M_b V_b - M_a V_a}{V_a + V_b}$$

$$= \frac{(0.200 \text{ M})(30.0 \text{ mL}) - (0.100 \text{ M})(50.0 \text{ mL})}{50.0 \text{ mL} + 30.0 \text{ mL}} = 0.0125 \text{ M}$$

To find the concentration of H_3O^+ , we use the K_w expression

$$[H_3O^+] = \frac{K_w}{[OH^-]} = \frac{1.00 \times 10^{-14}}{0.0125} = 8.00 \times 10^{-13}$$

Volume (mL) of Titrant	рН
0.00	1.00
5.00	1.14
10.00	1.30
15.00	1.51
20.00	1.85
22.00	2.08
24.00	2.57
25.00	7.00
26.00	11.42
28.00	11.89
30.00	12.50
35.00	12.37
40.00	12.52
45.00	12.62
50.00	12.70

2- Commercially available concentrated hydrochloric acid is 35% w/w HCL. Its density is 1.16 g/mL. Using this information calculate the molarity of concentrated HCl (3marks)

$$d = 1000x1.18 = 1180g/L$$

M=0.37x1180/36.5=11.96M

3- The maximum allowed concentration of chloride in a municipal drinking water supply is 2.5x10² ppm Cl⁻. When the supply of water exceeds this limit, it often has a distinctive salty taste. What is this concentration in moles Cl⁻/litre?

(atomic weight =35.5)

(2marks)

$$\frac{2.50 \times 10^{2} \text{ mg Cl}^{-}}{\text{L}} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{1 \text{ mole Cl}^{-}}{35.453 \text{ g Cl}^{-}} = 7.05 \times 10^{-3} \text{ M}$$

With my best wishes

Dr:Hend EL Sayed Gadow

Page 6 of 6